Операции над числами в системе счисления. Арифметические операции в различных. Заем единицы из старшего разряда

Кроме десятичной существует неизмеримое количество других систем, при этом некоторые из них используются для представления и обработки информации в компьютере. Существуют два вида систем счисления: позиционные и непозиционные.

Непозиционными системами называются такие, у которых каждая цифра сохраняет свое значение независимо от места нахождения в числе. Примером может служить римская система счисления, в которой используются такие цифры как I, V, X, L, C, D, M и т.д.

Позиционными называются системы счисления, в которых значение каждой цифры зависит от её места положения. Позиционная система характеризуется основой исчисления, под которой будет пониматься такое число £, которое показывает, сколько единиц какого-либо разряда необходимо для получения единица старшего порядка.

Например, можно записать

Что соответствует числам в десятичной системе счисления

Индекс снизу указывает на основу счисления.

Для перевода положительных чисел, из одной системы счисления в другую известны два правила:

Перевод чисел из системы , в систему;

Перевод чисел из системы , в системус использованием арифметики системы;

Рассмотрим первое правило . Допустим, число в десятичной системе необходимо представить в двоичной системе . Для этого данное число делится на основание системы представленное в системе , т.е. на 2 10 . Остаток от деления будет младшим разрядом двоичного числа. Целая часть результата от деления вновь делится на 2. Операцию деления повторять столько раз, пока частное не будет меньше двух.

Пример: 89 10 перевести в двоичное число, пользуясь арифметикой десятичной системы счисления

89 10 → 1011001 2

Обратный перевод, согласно того же правила, следующий:

1011001 2 перевести в десятичное число, пользуясь арифметикой двоичной системы счисления

Двоичные числа 1000 и 1001 согласно таблице 2.1 соответственно равны 8 и 9. Поэтому 1011001 2 → 89 10

Иногда обратный перевод удобнее осуществлять, пользуясь общим правилом представления числа в какой-либо системе исчисления.

Рассмотрим второе правило. Перевод чисел из системы , в системус использованием арифметики системы. Для осуществления перевода необходимо каждую цифру числа в системеумножить на основание системы счисленияпредставленной в системе счисленияи в степени позиции этого числа. После чего полученные произведения суммируются.

Арифметические и логические операции

Арифметические операции

Рассмотрим арифметику двоичной системы счисления, так как именно она используется в современных компьютерах по следующим причинам:

Существуют простейшие физические элементы, которые имеют только два состояния и которые можно интерпретировать как 0 и 1;

Арифметическая обработка очень проста.

Числа в восьмеричной и шестнадцатеричной системах счисления обычно используется как средство замены длинного и поэтому неудобного представления двоичных чисел.

Операции сложения, вычитания и умножения в двоичной системе имеют вид:

Как уже было продемонстрировано ранее, чтобы обойтись только сумматором, то есть выполнять лишь операции сложения, операция вычитания заменена на сложение. Для этого код отрицательного числа формируется как дополнение до чисел 2, 10, 100 и т.д.

Система счисления (СС)-это совокупность приёмов и правил записи чисел с помощью определенного набора символов.
Алфавит СС - набор символов(цифр), используемых для записи числа.
Основание СС (мощность алфавита СС) - количество символов(цифр) алфавита СС.
Все системы счисления делятся на позиционные и непозиционные . Непозиционная система счисления - это система, в которой количественный эквивалент каждой цифры не зависит от ее положения (места, позиции) в записи числа.
Итак, в непозиционных системах счисления позиция, которую цифра занимает в записи числа, роли не играет. Так, например, римская система счисления непозиционная. В числах XI и IX "вес” обоих цифр одинаков, несмотря на их месторасположение.

Позиционные системы счисления

Позиционная система счисления это система, в которой значение цифры зависит от ее места (позиции) в записи числа. Основание системы счисления количество знаков или символов, используемых для изображения числа в данной системе счисления
Основание системы счисления определяет её название: основание p - p-ая система счисления.
Например, система счисления в основном, применяемая в современной математике, является позиционной десятичной системой, её основание равно десяти. Для записи любых чисел в ней используется десять всем хорошо известных цифр (0,1,2,3,4,5,6,7,8,9).

Итак, мы сказали, что в позиционных системах счислениях имеет значение позиция, которую цифра занимает в записи числа. Так, запись 23 означает, что это число можно составить из 3 единиц и 2 десятков. Если мы поменяем позиции цифр, то получим совсем другое число – 32. Это число содержит 3 десятка и 2 единицы. «Вес» двойки уменьшился в десять раз, а «вес» тройки в десять раз возрос. Развернутая запись числа
Любое число N в позиционной системе счисления с основанием p может быть представлено в виде многочлена от p :
N=a k p k + a k-1 p k-1 +a k-2 p k-2 +...+a 1 p 1 +a 0 p 0 +a -1 p -1 +a -2 p -2 +...,
где N - число, p - основание системы счисления (p>1), a i - цифры числа (коэффициенты при степени p).
Числа в p-ой системе счисления записываются в виде последовательности цифр:
N=a k a k-1 a k-2 ...a 1 a 0 , a -1 a -2...
Запятая в последовательности отделяет целую часть числа от дробной.
3210 -1-2
N=4567,12 10 =4 *10 3 +5 *10 2 +6 *10 1 +7 *10 0 +1 *10 -1 +2 *10 -2

Двоичная система счисления

Для записи чисел используются только две цифры – 0 и 1. Выбор двоичной системы для использования в компьютере объясняется тем, что электронные элементы, из которых строятся ЭВМ, могут находиться только в двух хорошо различимых состояниях. По существу эти элементы представляют собой выключатели. Как известно выключатель либо включен, либо выключен. Третьего не дано. Одно из состояний обозначается цифрой 1, другое – 0. Благодаря таким особенностям двоичная система стала стандартом при построении ЭВМ.
В этой системе счисления любое число может быть представлено в виде:
N=a k 2 k + a k-1 2 k-1 +a k-2 2 k-2 +...+a 1 2 1 +a 0 2 0 +a -1 2 -1 +a -2 2 -2 +....
Например:11001,01 2 =1 *2 4 +1 *2 3 +0 *2 2 +0 *2 1 +1 *2 0 +0 *2 -1 +1 *2 -2 (развернутая запись числа в двоичной системе счисления)

Двоичная арифметика

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным правилам.

Сложение

Рассмотрим сложение чисел в двоичной системе счисления. В основе лежит таблица сложения одноразрядных двоичных чисел:

0+0=0
0+1=1
1+0=1
1+1=10
1+1+1=11

Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или больше основания системы счисления. Для двоичной системы счисления эта величина равна двум.
Сложение многоразрядных двоичных чисел происходит в соответствие с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов с старшие.

Вычитание

Рассмотрим вычитание двоичных чисел. В основе лежит таблица вычитания одноразрядных двоичных чисел. При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначается 1 с чертой.

0-0=_0
0-1=11
1-0=1
1-1=0

Сложение и вычитание одноразрядных двоичных чисел
Сложение и вычитание многоразрядных двоичных чисел (примеры)

Умножение

В основе умножения лежит таблица умножения одноразрядных двоичных чисел:

0*0=0
0*1=0
1*0=0
1*1=1

Умножение многоразрядных двоичных чисел происходит в соответствии с приведенной таблицей умножения по обычной схеме, применяемой в десятичной системе счисления, с последовательным умножением множимого на очередную цифру множителя.

Деление

Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления.

Арифметические операции в позиционных системах счисления

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным вам правилам.

Сложение. Рассмотрим сложение чисел в двоичной системе счисления. В его основе лежит таблица сложения одноразрядных двоичных чисел:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или большей основания.

Сложение многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов в старшие. В качестве примера сложим в столбик двоичные числа 110 2 и 11 2:

Проверим правильность вычислений сложением в десятичной системе счисления. Переведем двоичные числа в десятичную систему счисления и затем их сложим:

110 2 = 1 × 2 2 + 1 × 2 1 + 0 × 2 0 = 6 10 ;

11 2 = 1 × 2 1 + 1 × 2 0 = 3 10 ;

6 10 + 3 10 = 9 10 .

Теперь переведем результат двоичного сложения в десятичное число:

1001 2 = 1 × 2 3 + 0 × 2 2 + 0 × 2 1 + 1 × 2 0 = 9 10 .

Сравним результаты - сложение выполнено правильно.

Вычитание. Рассмотрим вычитание двоичных чисел. В его основе лежит таблица вычитания одноразрядных двоичных чисел. При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначен 1 с чертой:

Умножение. В основе умножения лежит таблица умножения одноразрядных двоичных чисел:

Деление. Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления. В качестве примера произведем деление двоичного числа 110 2 на 11 2:

Для проведения арифметических операций над числами, выраженными в различных системах счисления, необходимо предварительно перевести их в одну и ту же систему.

Задания

1.22. Провести сложение, вычитание, умножение и деление двоичных чисел 1010 2 и 10 2 и проверить правильность выполнения арифметических действий с помощью электронного калькулятора.

1.23. Сложить восьмеричные числа: 5 8 и 4 8 , 17 8 и 41 8 .

1.24. Провести вычитание шестнадцатеричных чисел: F 16 и А 16 , 41 16 и 17 16 .

1.25. Сложить числа: 17 8 и 17 16 , 41 8 и 41 16

Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны - это сложение, вычитание, умножение столбиком и деление углом. Эти правила применимы и ко всем другим позиционным системам счисления. Только надо пользоваться особыми таблицами сложения и умножения для каждой системы.

1. Сложение

Таблицы сложения легко составить, используя правила счета.

При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.

Пример 1. Сложим числа 15 и 6 в различных системах счисления .

Пример 2. Сложим числа 15, 7 и 3.

Шестнадцатеричная : F 16 +7 16 +3 16

15+7+3 = 25 10 = 11001 2 = 31 8 = 19 16 .

Проверка:

11001 2 = 2 4 + 2 3 + 2 0 = 16+8+1=25,

31 8 = 3 . 8 1 + 1 . 8 0 = 24 + 1 = 25,

19 16 = 1 . 16 1 + 9 . 16 0 = 16+9 = 25.

Пример 3. Сложим числа 141,5 и 59,75 .

Ответ: 141,5 + 59,75 = 201,25 10 = 11001001,01 2 = 311,2 8 = C9,4 16

Проверка. Преобразуем полученные суммы к десятичному виду :

11001001,01 2 = 2 7 + 2 6 + 2 3 + 2 0 + 2 -2 = 201,25

311,2 8 = 3 . 8 2 + 1 . 8 1 + 1 . 8 0 + 2 . 8 -1 = 201,25

C9,4 16 = 12 . 16 1 + 9 . 16 0 + 4 . 16 -1 = 201,25

2. Вычитание

Вычитание в двоичной системе счисления

уменьшаемое

вычитаемое

0

1

0

1

заем

Вычитание в шестнадцатеричной системе счисления

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Заем единицы из старшего разряда

Вычитание в восьмеричной системе счисления

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Заем единицы из старшего разряда

Пример 4. Вычтем единицу из чисел 10 2 , 10 8 и 10 16

Пример 5. Вычтем единицу из чисел 100 2 , 100 8 и 100 16 .

Пример 6. Вычтем число 59,75 из числа 201,25.

Ответ: 201,25 10 - 59,75 10 = 141,5 10 = 10001101,1 2 = 215,4 8 = 8D,8 16 .

Проверка. Преобразуем полученные разности к десятичному виду:

10001101,1 2 = 2 7 + 2 3 + 2 2 + 2 0 + 2 -1 = 141,5;

215,4 8 = 2 . 8 2 + 1 . 8 1 + 5 . 8 0 + 4 . 8 -1 = 141,5;

8D,8 16 = 8 . 16 1 + D . 16 0 + 8 . 16 -1 = 141,5.

Сложение и вычитание

В системе с основанием для обозначения нуля и первых с-1 натуральных чисел служат цифры 0, 1, 2, ..., с - 1. Для выполнения операции сложения и вычитания составляется таблица сложения однозначных чисел.

Таблица 1 - Сложение в двоичной системе

Например, таблица сложения в шестеричной системе счисления:

Таблица 2 - Сложение в шестеричной системе

Сложение любых двух чисел, записанных в системе счисления с основанием с, производится так же, как в десятичной системе, по разрядам, начиная с первого разряда, с использованием таблицы сложения данной системы. Складываемые числа подписываются одно за другим так, чтобы цифры одинаковых разрядов стояли по вертикали. Результат сложения пишется под горизонтальной чертой, проведенной ниже слагаемых чисел. Так же как при сложении чисел в десятичной системе, в случае, когда сложение цифр в каком-либо разряде дает число двузначное, в результат пишется последняя цифра этого числа, а первая цифра прибавляется к результату сложения следующего разряда.

Например,

Можно обосновать указанное правило сложения чисел, используя представление чисел в виде:

Разберем один из примеров:

3547=3*72+5*71+4*70

2637=2*72+6*71+3*70

(3*72+5*71+4*70) + (2*72+6*71+3*70) =(3+2)*72+(5+6)*7+(3+4)=

5*72+1*72+4*7+7=6*72+4*7+7=6*72+5*7+0=6507

Последовательно выделяем слагаемые по степени основания 7, начиная с низшей, нулевой, степени.

Вычитание производится также по разрядам, начиная с низшего, причем если цифра уменьшаемого меньше цифры вычитаемого, то из следующего разряда уменьшаемого "занимается" единица и из полученного двузначного числа вычитается соответствующая цифра вычитаемого; при вычитании цифр следующего разряда в этом случае нужно мысленно уменьшить цифру уменьшаемого на единицу, если же эта цифра оказалась нулем (и тогда уменьшение ее невозможно), то следует "занять" единицу из следующего разряда и затем произвести уменьшение на единицу. Специальной таблицы для вычитания составлять не нужно, так как таблица сложения дает результаты вычитания.

Например,

Умножение и деление

Для выполнения действий умножения и деления в системе с основанием с составляется таблица умножения однозначных чисел.

Таблица 3 - Умножение однозначных чисел

Таблица 4 - Умножение в шестеричной системе счисления

Умножение двух произвольных чисел в системе с основанием с производится так же, как в десятичной системе - "столбиком", то есть множимое умножается на цифру каждого разряда множителя (последовательно) с последующим сложением этих промежуточных результатов.

Например,

При умножении многозначных чисел в промежуточных результатах индекс основания не ставится:

Деление в системах с основанием с производится углом, так же, как в десятичной системе счисления. При этом используется таблица умножения и таблица сложения соответствующей системы. Сложнее дело обстоит, если результат деления не является конечной с-ичной дробью (или целым числом). Тогда при осуществлении операции деления обычно требуется выделить непериодическую часть дроби и ее период. Умение выполнять операцию деления в с-ичной системе счисления полезно при переводе дробных чисел из одной системы счисления в другую.

Например:


Перевод чисел из одной системы счисления в другую

Существует много различных способов перевода чисел из одной системы счисления в другую.

Способ деления

Пусть дано число N=an an-1. . . a1 а0 р.

Для получения записи числа N в системе с основанием h следует представить его в виде:

N=bmhm+bm-1hm-1+... +b1h+b0 (1)

где 1

N=bmbm-1... b1boh (2)

Из (1) получаем:

N= (bmhm-1+...+b)*h +b0 = N1h+b0, где 0? b0 ?h (3)

To есть, цифра b0 является остатком от деления числа N на число h. Неполное частное Nl = bmhm-1+ . . . +b1 представим в виде:

Nl = (bmhm-2 + ... + b2)h + b1 = N2h+b1, где 0? b2 ?h (4)

Таким образом, цифра bi в записи (2) числа N является остатком от деления первого неполного частного N1 на основание h новой системы счисления. Второе неполное частное N2 представим в виде:

N2 = (bmhm-3+ ... +b3)h+b2, где 0? b2 ?h (5)

то есть цифра b2 является остатком от деления второго неполного частного N2 на основание h новой системы. Так как не полные частные убывают, то этот процесс конечен. И тогда мы получаем Nm = bm, где bm

Nm-1 = bmh+bm.1 = Nmh+bm.1

Таким образом, последовательность цифр bm, bm-1 . . ,b1,b0 в записи числа N в системе счисления с основанием h есть последовательность остатков последовательного деления числа N на основание h, взятая в обратной последовательности.

Рассмотрим пример: Выполнить перевод числа 123 в шестнадцатеричную систему счисления:

Таким образом, число 12310=7(11)16 либо можно записать как 7B16

Запишем число 340227 в пятеричной системе счисления:

Таким образом, получаем, что 340227=2333315

error: