Что такое DVI-разъем? Разъемы для подключения устройств вывода. DVI — разбор и характеристики видео разъёма Как выглядит разъем dvi

Мы привыкли сетовать на относительно несущественные отличия в производительности чипсетов, материнских плат и даже процессоров. При этом мы упускаем из вида один из наиболее важных аспектов современных компьютеров - качество видеоизображения.

За последние несколько лет, с распространением 19" и 21" мониторов, все больше пользователей стало выказывать недовольство качеством изображения, формируемым видеокартой. Изображение получается не таким ясным, в нем присутствует чрезмерная размытость, бывает невозможно читать текст, набранный мелким шрифтом. А так как все эти симптомы проявлялись при работе стандартных Windows приложений, об этом стали говорить как о плохом качестве "2D изображения". Мы тоже не без греха - в прошлом мы проводили серию тестов, где субъективно оценивали качество 2D изображения различных видеокарт. Однако термин "2D" ошибочен, поскольку плохое качество наблюдается на любых приложениях, а не только в 2D.

Для того, чтобы разобраться в причинах этого явления, важно понимать, что монитор подключается к видеокарте все ещё по аналоговому соединению. Что имеется в виду, когда мы говорим "аналоговый"? Хотя в основе цифровых схем лежит набор аналоговых компонентов, цифровой системе понятны лишь только два дискретных значения. Цифровое оборудование работает всегда правильно: каждый раз, когда вы передаете единицу цифровым способом, вы получаете именно единицу. В независимости от колебаний напряжения или от любых помех, происходящих при передаче. В аналоговой же системе, в результате передачи единицы, можно получить уже не единицу, а 0,935 или 1,062. Поэтому необязательно, что вы увидите на экране именно то, что формирует видеокарта.

Представьте, к примеру, аналоговое соединение между клавиатурой и компьютером. Если бы аналого-цифровой преобразователь компьютера неправильно интерпретировал сигнал, поступающий с клавиатуры, то вместо буквы "а", которую вы только что напечатали на клавиатуре, на экране вы могли бы увидеть букву "б". Точно таким же образом размытость, которую вы видите при высоком разрешении, отнюдь не формируется графическим чипом. Данные, которые отображаются на экране, поступают из буфера кадров (памяти) видеокарты в цифровом виде, но перед тем, как выйти из видеокарты, сигнал пройти через RAMDAC. RAMDAC (Random Access Memory Digital to Analog Converter - цифро-аналоговый преобразователь с ОЗУ) преобразует цифровые данные в аналоговый сигнал, и до недавнего времени, именно в нем заключалась причина плохого качества изображения. В настоящее время полоса пропускания современных RAMDAC значительно выше, да и качество лучше. Поэтому потери в качестве изображения по вине RAMDAC сейчас случаются реже.

После преобразования RAMDAC, аналоговый сигнал покидает видеокарту, и через VGA кабель (очередной источник потери качества сигнала) поступает в монитор. И если у вас вместо традиционного аналогового ЭЛТ монитора используется цифровая панель, то измывательства над сигналом не прекращаются - и без того плохого качества аналоговый сигнал здесь преобразуется обратно в цифровой. Согласитесь, в этой последней фазе очень мало смысла. Ведь мы только что говорили, что из буфера кадров сигнал поступает в полностью цифровом виде. И здесь на сцене появляется DVI.

В этой статье мы познакомимся с цифровым видео-интерфейсом (DVI) и рассмотрим, как решаются проблемы передачи сигнала между компьютером и монитором. Кроме того, мы поговорим о различных реализациях DVI в современных видеокартах, и о том, как с минимальными затратами улучшить качество выходящего аналогового сигнала.


Что такое DVI?

Многие воспринимают DVI как "тот белый разъем, который я никогда не использовал". Но на самом деле DVI является очень важным стандартом. За ним стоит целая группа компаний во главе с Digital Display Working Group (DDWG) - группой разработки цифровых дисплеев. Кроме нее, ключевую роль здесь играют Intel и Silicon Image. Почему так произошло, мы расскажем позднее.

Группа DDWG пришла к тому же выводу, который мы озвучили ранее: нет смысла преобразовывать цифровой сигнал в аналоговый, чтобы на мониторе преобразовывать его обратно в цифровую форму. Спецификация DVI была разработана именно с расчетом на то, что в будущем большинство мониторов станут цифровыми. И мы редко используем DVI именно потому, что до сих пор применяем традиционные ЭЛТ-мониторы.

Спецификация достаточно проста для понимания. Для передачи данных по DVI соединению используется протокол последовательного кодирования TMDS, разработанный компанией Silicon Image. И неудивительно, что когда дело дошло до TMDS передатчиков, чаще использовались интегральные схемы именно этой компании. Спецификация DVI предполагает, по крайней мере, одно TMDS "соединение", которое состоит из трех каналов данных (RGB) и одного канала синхронизации.

Два соединения TMDS - из спецификации DVI 1.0

В соответствии со спецификацией DVI, соединение TMDS может работать на частоте до 165 МГц. Одно 10-битное TMDS соединение позволяет передавать данные со скоростью 1,65 Гбит/с - этого более чем достаточно для цифровой панели 1920х1080 с частотой регенерации 60 Гц. Максимальное разрешение зависит от пропускной способности канала, требуемого для воспроизведения данного разрешения, а также от эффективности устройства, на которое передается сигнал. Цель нашей статьи несколько иная, однако все же следует отметить, что в цифровых панелях разных технологий максимально допустимое разрешение разное.

Чтобы спецификация была максимально гибкой, возможно использование второго TMDS соединения. Оно должно работать на той же частоте, что и первое, то есть для того, чтобы достичь пропускной способности 2 Гбит/с, каждый канал должен работать на частоте 100МГц (100МГц х 2 х 10 бит).

Эта спецификация оставила позади себя всех своих конкурентов именно в силу высокой пропускной способности.


DVI-I vs DVI-D

Ещё одним преимуществом спецификации DVI, хотя и незаслуженно оставленным без внимания, является поддержка на одном интерфейсе как аналогового, так и цифрового соединений. Ниже как раз представлена иллюстрация разъема DVI.

Слева вы видите три ряда по восемь выводов. Для работы трех каналов данных и одного канала синхронизации достаточно этих 24 выводов. Крестообразный район справа заключает в себе пять выводов, необходимых для передачи аналогового видеосигнала.

И здесь спецификация делится на две части: разъем DVI-D содержит только 24 вывода, необходимых для работы в цифровом виде, а DVI-I, кроме 24 цифровых выводов, имеет ещё и пять аналоговых (на фотографии как раз представлена фотография разъема DVI-I). Далее отметим, что официально разъема DVI-A - полностью аналогового разъема - не существует. Тем не менее, в различной литературе можно встретить подобные обозначения. В настоящее время, большинство графических карт поддерживают разъемы DVI-I.

За универсальностью этого разъема стоит идея замены стандартных 15-выводных VGA разъемов, к которым мы так привыкли. Предполагается, что такое решение намного лучше - ведь будут поддерживаться как аналоговые, так и цифровые мониторы.


Как насчет масштабирования?

Главной проблемой, с которой сталкиваются когда речь идет о цифровых панелях (главном применении спецификации DVI), является фиксированное "родное" разрешение. Именно в этом разрешении гарантируется правильное изображение. Так как экран состоит из фиксированного количества пикселей, работа в разрешении больше "родного" невозможна.

Тем не менее, намного чаще случается, когда экран работает в меньшем разрешении. Взять, к примеру, монитор Apple 22" Cinema Display. Его "родное" разрешение составляет 1600 х 1024. Играть при таком разрешении в игры - чистое безумие. Не говоря уже о том, что игр, поддерживающих такое странное разрешение, не существует. Поэтому вам придется играть либо в разрешении 1024 x 768, либо 1280 х 1024. Проблема теперь заключается в том, что изображение должно быть масштабировано для правильного отображения на экране.

До поры до времени о масштабировании изображения никто не задумывался. Но лишь до тех пор, пока цифровые панели не начали приобретать популярность. И здесь производителям пришлось призадуматься. Спецификация DVI подразумевает перекладывание работы по масштабированию, фильтрации и отображению картинки в правильных координатах на плечи производителей мониторов. Поэтому любой монитор, полностью совместимый со спецификацией DVI должен уметь сам масштабировать и фильтровать изображение. На самом деле, применить относительно хороший алгоритм масштабирования не так и сложно, поэтому не стоит ожидать большой разницы между мониторами в этом отношении (Тем не менее, мы уверены, разница будет).


Поддержка DVI в современных видеокартах

С появлением GeForce2 GTS, NVIDIA встраивает TMDS передатчики в GPU. Точно таким же образом они встраиваются и в современной линейке карт Titanium. Недостатком встроенных TMDS передатчиков является то, что они работают на слишком медленной тактовой частоте, не позволяющей поддерживать высокие разрешения. Создается впечатление, что интегрированные передатчики TMDS не задействовали и не задействуют по максимуму всю пропускную способность 165 МГц соединения. Поэтому вся реализация DVI в картах nVidia относительно бесполезна для экранов с высоким разрешением.


Если у вашей карты nVidia имеется разъем DVI,
то, скорее всего, на карте вы найдете и нечто подобное

Чтобы преодолеть эти недостатки, платы nVidia стали оснащаться вторым, внешним TMDS передатчиком производства Silicon Image. В зависимости от дизайна платы, этот передатчика может осуществлять второе соединение, параллельно с соединением встроенного TMDS, либо он может игнорировать встроенный TMDS передатчик. Непонятно, почему встроенный передатчик TMDS не справляется с возложенными на него обязанностями, но если проблема будет решена, то производителям не придется добавлять внешний TMDS передатчик на видеокарту, и на этом будет достигнута определенная экономия. Именно благодаря внешнему TMDS передатчику возможна работа через разъем DVI-I в разрешениях до 1920 х 1440.

Вам могут попасться карты nVidia с DVI разъемом, которые не будут работать с подключенным DVI монитором. Мы провели неформальное тестирование нескольких DVI карт, имевшихся в нашей лаборатории, и вот каковы результаты: все новые карты Titanium работали прекрасно, а вот Gainward GeForce3 и nVidia Reference GeForce2 MX не работали. Если у вас одна из последних карт Titanium - скорее всего она будет работать у вас прекрасно практически в любом высоком разрешении, хотя в документации заявлен максимум 1280х1024. Мы проверили все новые карты Titanium с DVI на нашем Apple Cinema Display в разрешении 1600х1024.

Что касается ATI, то это совершенно другая история. Все цифровые выходы DVI карт ATI работают от встроенных в GPU ATI TMDS. ATI по-своему решила проблему разъемов DVI-I. Часть её видеокарт поставляется с DVI выходами и с переходниками DVI - VGA. Этот переходник соединяет 5 аналоговых выводов DVI-I и VGA разъем.


ATI All-in-Wonder Radeon была первой картой ATI,
поставляемой с переходником DVI-VGA (показан на рисунке)

Похоже, Matrox является единственным производителем графики для ПК, представляющем на рынке двойное решение DVI. Matrox G550 поставляется с двойным DVI кабелем, тем не менее, Matrox утверждает, что максимальное разрешение DVI монитора всего лишь 1280х1024. Так как нам не удалось ни подтвердить, ни опровергнуть эти данные, тем, кто планирует работу в высоких разрешениях, советуем отнестись к такому выбору более осторожно.


Заключение: что делать, пока нет DVI, и как улучшить качество изображения на картах nVidia?

Вместо пожеланий "как все будет прекрасно, когда все перейдут на DVI", закончим статью более жизненным выводом. Быть самым лучшим производителем графических чипов на земле не так-то просто. Для nVidia основная проблема заключается в невозможности контроля и отслеживания производства всех карт, носящих имя компании. Позволив сторонним компаниям (таким как ASUS, Chaintech, Gainward, Visiontek и т.д.) создавать карты на базе чипов nVidia, компания возлагает контроль качества на самих производителей. Но поскольку компания предлагает производителям эталонный дизайн, они редко сталкиваются с крупными проблемами. Впрочем, одной из таких немногочисленных проблем является ситуация с качеством изображения.

Чтобы соответствовать стандарту FCC (по защите от помех), непосредственно перед аналоговым видеовыходом всех видеокарт устанавливается низкочастотный фильтр. Он пропускает сигналы с частотой ниже определенного значения и задерживает все остальные высокочастотные сигналы, не сказывающиеся на качестве.

Проблемы с картами nVidia начинаются тогда, когда низкочастотные фильтры сторонних производителей, кроме различных ненужных частот, не пропускают некоторые важные частоты. Вряд ли конденсаторы и катушки индуктивности, из которых состоят эти низкочастотные фильтры, преднамеренно выбирались самого плохого качества. Точно так же, вряд ли номинальные характеристики компонентов не соответствуют требованиям nVidia. Возможно, что когда производители покупали компоненты для этих фильтров, некоторые из них отличались по качеству. Скорее всего, этим и объясняется спорадический характер появления проблем с изображением. Какая бы причина ни крылась за всем этим, улучшить качество изображения можно удалением низкочастотного фильтра. Далее мы рассмотрим, как проделать эту операцию с минимальными затратами.

Оговоримся, что после удаления низкочастотного фильтра вы лишаетесь гарантии на свою видеокарту, и мы не несем ответственность за возможные неисправности. Сама же операция предельно проста. На всех видеокартах nVidia, начиная с GeForce, низкочастотный фильтр можно заметить по 3 наборам по три конденсатора, параллельно соединенных с двумя наборами из 3 катушек индуктивности рядом с разъемом VGA. Для каждого компонента сигнала RGB, посылаемого монитору, используется свой набор устройств. Кроме того, на большинстве плат имеется набор защитных диодов, хотя далеко не всегда.

На этой GeForce2 Pro, в прямоугольники обведены три набора по три конденсатора. Их нужно откусить. Слева направо на рисунке: колонка конденсаторов, набор катушек, второй набор конденсаторов, набор защитных диодов, ещё один набор катушек и последний набор конденсаторов.

На плате GeForce3 с разъемом DVI-I, низкочастотный фильтр расположен рядом с разъемом DVI-I. Если на карте нет разъема DVI-I, тогда компоненты фильтра можно найти рядом с выходом VGA, либо там, где должен был находиться разъем DVI.

На этой Visiontek GeForce3 Ti 500 уже удален ряд конденсаторов (в красном прямоугольнике). Поэтому неудивительно, что карта дает качественное изображение. Конденсаторы находятся рядом с разъемом DVI. После того, как вы откусите конденсаторы, все, что должно остаться, можно увидеть выше в красном прямоугольнике.

Вся операция по откусыванию 9 конденсаторов выполняется простыми кусачками. При правильном подходе плату вы не повредите. В итоге же все зависит от того, насколько плохим был сигнал с вашей карты до операции. В результате некоторых операций мы не достигали практически никаких улучшений, а бывало, и без того отлично работавшая карта показывала ещё более превосходный результат.

Чтобы полностью избавиться от низкочастотного фильтра, вам придется замкнуть катушки индуктивности, чтобы они тоже не оказывали никакого воздействия. После удаления конденсаторов, эффект от замыкания катушек не такой значительный. Сама же операция намного сложнее.

Опять же, удалив этот фильтр, появляется вероятность пропускания высоких частот, которые способны создавать помехи для других устройств. Но вероятность тому крайне мала.

Почему такая модернизация не требуется картам ATI или Matrox? До недавнего времени и ATI, и Maxtor сами производили все платы на своих собственных чипах, поэтому весь контроль всех компонентов осуществлялся очень тщательно. Нам ещё предстоит увидеть, повлияет ли решение ATI о производстве плат сторонними производителями на качество изображения. Столкнуться ли пользователи с теми же проблемами, что и пользователи nVidia.

Очевидно, что скоро, с развитием и популяризацией стандарта DVI, конечным пользователям уже не придется забивать голову вопросами, почему качество изображения такое плохое, и что тому виной...

DVI (Digital Visual Interface , цифровой интерфейс для изображения ) — разъём разработанный Digital Display Working Group , как первый цифровой разъём для жидко-кристаллических (ЖК ) панелей. Так как аналоговый D —Sub был предназначен для ЭЛТ мониторов, при изменении уровня сигнала, менялась и яркость, что для ЖК монитора не желательно. К тому же, уже начал подходить к порогу пропускной способности, нужной для больших разрешений. Да и лишний преобразователь сигнала на входе монитора, точно не улучшал картинку. Позже, проблема изменения яркости для D-Sub решилась, а интерфейс до сих пор используют в бюджетных мониторах в единичном экземпляре, либо для совместимости совместно с цифровыми входами.

Для передачи данных используется последовательный формат PanelLink , который использует T ransition M inimized D ifferential S ignaling (передача сигнала с минимальными изменениями сигнала ). Поддерживается 3 потока для передачи данных со скоростью вплоть до 3,96 Гбит/с .

Для достижения максимальной скорости передачи, нужно чтобы длина кабеля не превышала 1.5 метра . С ростом длинны, сигнал начинает затухать , так что при подключении на дальние расстояниях нужно использовать специальные активные усилители . Также, способность передачи сигнала сильно зависит от качества проводов , их сопротивления и т.д.

Обозначения и разновидности DVI разъёмов :


  • DVI —D — поддержка только цифровой передачи
  • DVI-A – поддержка только аналоговой передачи
  • DVI-I – поддержка аналоговой и цифровой передачи

Разъём передаёт 24-х битный цвет во всех разрешениях, но при использовании Dual —link DVI на определённом оборудовании, теоретически, можно добиться 48 бит .

Максимальное разрешение для одноканального режима (Single-Link ) DVI 1920 х1200 х60Гц .

Для двухканального (Dual-Link ) режима максимальное разрешение составляет — 3,840 × 2,400 х33 Гц, либо 2,560 × 1,600 при стандартных 60 Гц .

При каких либо проблемах в отображении информации через DVI, основными причинами могут быть:

  • · Сдавливание, перекручивание кабеля.
  • · Плохой контакт или засорение контактов вилки и штекера.
  • · Электромагнитные помехи, проходящих рядом кабелей высокого напряжения, либо кабель DVI плохо экранирован.
  • · Слишком высокое разрешение и следовательно нехватка пропускной способности.

До 2015 года планируется полностью вытеснить DVI новым стандартом —

#VGA #DVI-D #DVI-I #HDMI #DisplayPort

Интерфейсы, массово применяемые в настоящее время:

VGA

(D-Sub) - единственный аналоговый интерфейс подключения мониторов, ещё применяемый в настоящее время. Морально устарел, однако будет активно использоваться ещё длительное время. Главный недостаток связан с необходимостью применения двойного преобразования сигнала в аналоговый формат и обратно, что приводит к потере качества при подключении цифровых устройств отображения (LCD мониторов , плазменных панелей, проекторов). Совместим с видеокартами с DVI-I и аналогичным разъёмом.

DVI-D

- базовый тип DVI интерфейса. Подразумевает только цифровое подключение, поэтому не может использоваться с видеокартами, имеющими только аналоговый выход. Очень широко распространен.

DVI-I

- расширенный вариант интерфейса DVI-D , наиболее часто встречающийся в настоящее время. Содержит 2 типа сигналов - цифровой и аналоговый. Видеокарты можно подключать как по цифровому, так и по аналоговому соединению, видеокарту с VGA(D-Sub)-выходом можно подключить к нему через простой пассивный переходник или специальным кабелем.
Если в документации к монитору указано, что в данной модификации применён вариант DVI Dual-Link, то для полноценной поддержки максимальных разрешений монитора (обычно это 1920*1200 и выше) видеокарта и применяемый DVI кабель также должны поддерживать Dual-Link, как полный вариант интерфейса DVD-D. Если используется кабель из комплекта монитора и относительно современная (на момент написания FAQ) видеокарта, то никаких дополнительных приобретений не требуется.

HDMI

- адаптация DVI-D для бытовой аппаратуры, дополненная цифровым интерфейсом для передачи многоканального звука. Присутствует фактически во всех современных LCD-телевизорах, плазменных панелях и проекторах. Для подключения к HDMI разъёму видеокарты с интерфейсом DVI-D или DVI-I достаточно простого пассивного переходника или кабеля соответствующими разъёмами. Видеокарту только с VGA (D-Sub) разъёмом подключить к HDMI невозможно!

Устаревшие и экзотические интерфейсы:

На выбор видеокарты также может повлиять и имеющийся или предполагаемый к приобретению монитор. Или даже мониторы (во множественном числе). Так, для современных LCD-мониторов с цифровыми входами очень желательно, чтобы на видеокарте был разъём DVI, HDMI или DisplayPort. К счастью, на всех современных решениях сейчас есть такие порты, а зачастую и все вместе. Ещё одна тонкость заключается в том, что если требуется разрешение выше 1920×1200 по цифровому выходу DVI, то обязательно нужно подключать видеокарту к монитору при помощи разъёма и кабеля с поддержкой Dual-Link DVI. Впрочем, сейчас с этим проблем уже нет. Рассмотрим основные разъёмы, использующиеся для подключения устройств отображения информации.

Аналоговый D-Sub разъём (также известен как VGA -выход или DB-15F )

Это давно известный всем и привычный 15-контактный разъём для подключения аналоговых мониторов. Сокращение VGA расшифровывается как video graphics array (массив пикселей) или video graphics adapter (видеоадаптер). Разъём предназначен для вывода аналогового сигнала, на качество которого может влиять множество разных факторов, таких, как качество RAMDAC и аналоговых цепей, поэтому качество получаемой картинки может отличаться на разных видеокартах. Кроме того, в современных видеокартах качеству аналогового выхода уделяется меньше внимания, и для получения чёткой картинки на высоких разрешениях лучше использовать цифровое подключение.

Разъёмы D-Sub были фактически единственным стандартом до времени широкого распространения LCD-мониторов. Такие выходы и сейчас часто используются для подключения LCD-мониторов, но лишь бюджетных моделей, которые плохо подходят для игр. Для подключения современных мониторов и проекторов рекомендуется использовать цифровые интерфейсы, одним из наиболее распространенных из которых является DVI.

Разъём DVI (вариации: DVI-I и DVI-D )

DVI — это стандартный интерфейс, чаще всего использующийся для вывода цифрового видеосигнала на ЖК-мониторы, за исключением самых дешевых. На фотографии показана довольно старая видеокарта с тремя разъёмами: D-Sub, S-Video и DVI. Существует три типа DVI-разъёмов: DVI-D (цифровой), DVI-A (аналоговый) и DVI-I (integrated — комбинированный или универсальный):

DVI-D — исключительно цифровое подключение, позволяющее избежать потерь в качестве из-за двойной конвертации цифрового сигнала в аналоговый и из аналогового в цифровой. Этот тип подключения предоставляет максимально качественную картинку, он выводит сигнал только в цифровом виде, к нему могут быть подключены цифровые LCD-мониторы с DVI-входами или профессиональные ЭЛТ-мониторы со встроенным RAMDAC и входом DVI (весьма редкие экземпляры, особенно сейчас). От DVI-I этот разъём отличается физическим отсутствием части контактов, и переходник DVI-to-D-Sub, о котором речь пойдет далее, в него не воткнуть. Чаще всего этот тип DVI применяется в системных платах с интегрированным видеоядром, на видеокартах он встречается реже.

DVI-A — это довольно редкий тип аналогового подключения по DVI, предназначенного для вывода аналогового изображения на ЭЛТ-приемники. В этом случае сигнал ухудшается из-за двойного цифрово-аналогового и аналогово-цифрового преобразования, его качество соответствует качеству стандартного VGA-подключения. В природе почти не встречается.

DVI-I — это комбинация двух вышеописанных вариантов, способная на передачу как аналогового сигнала, так и цифрового. Этот тип применяется в видеоплатах наиболее часто, он универсален и при помощи специальных переходников, идущих в комплекте поставки большинства видеокарт, к нему можно подключить также и обычный аналоговый ЭЛТ-монитор со входом DB-15F. Вот как выглядят эти переходники:

Во всех современных видеокартах есть хотя бы один DVI-выход, а то и два универсальных разъёма DVI-I. D-Sub чаще всего отсутствуют (но их можно подключать при помощи переходников, см. выше), кроме, опять же, бюджетных моделей. Для передачи цифровых данных используется или одноканальное решение DVI Single-Link, или двухканальное — Dual-Link. Формат передачи Single-Link использует один TMDS-передатчик (165 МГц), а Dual-Link — два, он удваивает пропускную способность и позволяет получать разрешения экрана выше, чем 1920×1080 и 1920×1200 на 60 Гц, поддерживая режимы очень высокого разрешения, вроде 2560×1600. Поэтому для самых крупных LCD-мониторов с большим разрешением, таких как 30-дюймовые модели, а также мониторов, предназначенных для вывода стереокартинки, обязательно будет нужна видеокарта с двухканальным выходом DVI Dual-Link или HDMI версии 1.3.

Разъём HDMI

В последнее время широкое распространение получил новый бытовой интерфейс — High Definition Multimedia Interface. Этот стандарт обеспечивает одновременную передачу визуальной и звуковой информации по одному кабелю, он разработан для телевидения и кино, но и пользователи ПК могут использовать его для вывода видеоданных при помощи HDMI-разъёма.

На фото слева — HDMI, справа — DVI-I. HDMI-выходы на видеокартах сейчас встречаются уже довольно часто, и таких моделей всё больше, особенно в случае видеокарт, предназначенных для создания медиацентров. Просмотр видеоданных высокого разрешения на компьютере требует видеокарты и монитора, поддерживающих систему защиты содержимого HDCP, и соединенных кабелем HDMI или DVI. Видеокарты не обязательно должны нести разъём HDMI на борту, в остальных случаях подключение HDMI-кабеля осуществляется и через переходник на DVI:

HDMI — это очередная попытка стандартизации универсального подключения для цифровых аудио- и видеоприложений. Оно сразу же получило мощную поддержку со стороны гигантов электронной индустрии (в группу компаний, занимающихся разработкой стандарта, входят такие компании, как Sony, Toshiba, Hitachi, Panasonic, Thomson, Philips и Silicon Image), и большинство современных устройств вывода высокого разрешения имеет хотя бы один такой разъём. HDMI позволяет передавать защищенные от копирования звук и изображение в цифровом формате по одному кабелю, стандарт первой версии основывается на пропускной способности 5 Гбит/с, а HDMI 1.3 расширил этот предел до 10,2 Гбит/с.

HDMI 1.3 — это обновленная спецификация стандарта с увеличенной пропускной способностью интерфейса, увеличенной частотой синхронизации до 340 МГц, что позволяет подключать дисплеи высокого разрешения, поддерживающие большее количество цветов (форматы с глубиной цвета вплоть до 48 бит). Новой версией спецификации определяется и поддержка новых стандартов Dolby для передачи сжатого звука без потерь в качестве. Кроме этого, появились и другие нововведения, в спецификации 1.3 был описан новый разъём mini-HDMI, меньший по размеру по сравнению с оригинальным. Такие разъёмы также используются на видеокартах.

HDMI 1.4b — это последняя новая версия данного стандарта, вышедшая не так давно. В HDMI 1.4 появились следующие основные нововведения: поддержка формата стереоотображения (также называемого «3D») с поочередной передачей кадров и активными очками для просмотра, поддержка Fast Ethernet-соединения HDMI Ethernet Channel для передачи данных, реверсивный аудиоканал, позволяющий передавать цифровой звук в обратном направлении, поддержка форматов разрешения 3840×2160 до 30 Гц и 4096×2160 до 24 Гц, поддержка новых цветовых пространств и самый маленький разъём micro-HDMI.

В HDMI 1.4a поддержка стереоотображения была значительно улучшена, появились новые режимы Side-by-Side и Top-and-Bottom в дополнение к режимам спецификации 1.4. И наконец, совсем свежее обновление стандарта HDMI 1.4b произошло буквально несколько недель назад, и нововведения этой версии пока неизвестны широкой публике, да и устройств с его поддержкой пока что на рынке нет.

Собственно, наличие именно разъёма HDMI на видеокарте необязательно, во многих случаях его может заменить переходник с DVI на HDMI. Он несложен и поэтому прилагается в комплекте большинства современных видеокарт. Мало того, современные GPU имеют встроенный аудиочип, необходимый для поддержки передачи звука по HDMI. На всех современных видеокартах AMD и NVIDIA нет необходимости во внешнем аудиорешении и соответствующих соединительных кабелях, и передавать аудиосигнал с внешней звуковой карты не нужно.

Передача видео- и аудиосигнала по одному HDMI-разъёму востребована прежде всего на картах среднего и низшего уровней, которые устанавливают в маленькие и тихие баребоны, используемые в качестве медиацентров, хотя и в игровых решениях HDMI применяется часто, во многом из-за распространения бытовой техники с такими разъёмами.

Разъём

Постепенно, в дополнение к распространенным видеоинтерфейсам DVI и HDMI, на рынке появляются решения с интерфейсом DisplayPort. Single-Link DVI передаёт видеосигнал с разрешением до 1920×1080 пикселей, частотой 60 Гц и 8 бит на компоненту цвета, Dual-Link позволяет передавать 2560×1600 на частоте 60 Гц, но уже 3840×2400 пикселей при тех же условиях для Dual-Link DVI недоступны. У HDMI почти те же ограничения, версия 1.3 поддерживает передачу сигнала с разрешением до 2560×1600 точек с частотой 60 Гц и 8 бит на компоненту цвета (на более низких разрешениях — и 16 бит). Хотя максимальные возможности у DisplayPort немногим выше, чем у Dual-Link DVI, лишь 2560×2048 пикселей при 60 Гц и 8 бит на цветовой канал, но у него есть поддержка 10-битного цвета на канал при разрешении 2560×1600, а также 12 бит для формата 1080p.

Первая версия цифрового видеоинтерфейса DisplayPort была принята VESA (Video Electronics Standards Association) весной 2006 года. Она определяет новый универсальный цифровой интерфейс, не подлежащий лицензированию и не облагаемый выплатами, предназначенный для соединения компьютеров и мониторов, а также другой мультимедийной техники. В группу VESA DisplayPort, продвигающую стандарт, входят крупные производители электроники: AMD, NVIDIA, Dell, HP, Intel, Lenovo, Molex, Philips, Samsung.

Основным соперником DisplayPort является разъём HDMI с поддержкой защиты от записи HDCP, хотя он предназначен скорее для соединения бытовых цифровых устройств, вроде плееров и HDTV-панелей. Ещё одним конкурентом раньше можно было назвать Unified Display Interface — менее дорогую альтернативу разъёмам HDMI и DVI, но основной её разработчик, компания Intel, отказалась от продвижения стандарта в пользу DisplayPort.

Отсутствие лицензионных выплат важно для производителей, ведь за использование в своей продукции интерфейса HDMI они обязаны выплачивать лицензионные сборы организации HDMI Licensing, которая затем делит средства между держателями прав на стандарт: Panasonic, Philips, Hitachi, Silicon Image, Sony, Thomson и Toshiba. Отказ от HDMI в пользу аналогичного «бесплатного» универсального интерфейса сэкономит производителям видеокарт и мониторов приличные средства — понятно, почему им DisplayPort понравился.

Технически, разъём DisplayPort поддерживает до четырёх линий передачи данных, по каждой из которых можно передавать 1,3, 2,2 или 4,3 гигабит/с, всего до 17,28 гигабит/с. Поддерживаются режимы с глубиной цвета от 6 до 16 бит на цветовой канал. Дополнительный двунаправленный канал, предназначенный для передачи команд и управляющей информации, работает на скорости 1 мегабит/с или 720 мегабит/с и используется для обслуживания работы основного канала, а также передачи сигналов VESA EDID и VESA MCCS. Также, в отличие от DVI, тактовый сигнал передаётся по сигнальным линиям, а не отдельно, и декодируется приёмником.

DisplayPort имеет опциональную возможность защиты контента от копирования DPCP (DisplayPort Content Protection), разработанную компанией AMD и использующую 128-битное AES-кодирование. Передаваемый видеосигнал несовместим с DVI и HDMI, но по спецификации допускается их передача. На данный момент DisplayPort поддерживает максимальную скорость передачи данных 17,28 гигабит/с и разрешение 3840×2160 при 60 Гц.

Основные отличительные особенности DisplayPort: открытый и расширяемый стандарт; поддержка форматов RGB и YCbCr; поддержка глубины цвета: 6, 8, 10, 12 и 16 бит на цветовую компоненту; передача полного сигнала на 3 метра, а 1080p — на 15 метров; поддержка 128-битного AES-кодирования DisplayPort Content Protection, а также 40-битного High-bandwidth Digital Content Protection (HDCP 1.3); бо́льшая пропускная способность по сравнению с Dual-Link DVI и HDMI; передача нескольких потоков по одному соединению; совместимость с DVI, HDMI и VGA при помощи переходников; простое расширение стандарта под изменяющиеся потребности рынка; внешнее и внутреннее присоединение (подсоединение LCD-панели в ноутбуке, замена внутренним LVDS-соединениям).

Обновленная версия стандарта — 1.1, появилась через год после 1.0. Её нововведениями стала поддержка защиты от копирования HDCP, важная при просмотре защищенного контента с дисков Blu-ray и HD DVD, и поддержка волоконно-оптических кабелей в дополнение к обычным медным. Последнее позволяет передавать сигнал на ещё бо́льшие расстояния без потерь в качестве.

В DisplayPort 1.2, утверждённом в 2009 году, была вдвое увеличена пропускная способность интерфейса, до 17,28 гигабит/с, что позволило поддержать более высокие разрешения, частоту обновления экрана и глубину цвета. Также именно в 1.2 появилась поддержка передачи нескольких потоков по одному соединению для подключения нескольких мониторов, поддержка форматов стереоотображения и цветовых пространств xvYCC, scRGB и Adobe RGB. Появился и уменьшенный разъём Mini-DisplayPort для портативных устройств.

Полноразмерный внешний разъём DisplayPort имеет 20 контактов, его физический размер можно сравнить со всем известными разъёмами USB. Новый тип разъёма уже можно увидеть на многих современных видеокартах и мониторах, внешне он похож и на HDMI, и на USB, но также может быть оснащён защёлками на разъёмах, аналогичным тем, что предусмотрены в Serial ATA.

Перед тем как AMD купила компанию ATI, последняя сообщила о поставках видеокарт с разъёмами DisplayPort — уже в начале 2007 года, но слияние компаний отодвинуло это появление на какое-то время. В дальнейшем AMD объявила DisplayPort стандартным разъёмом в рамках платформы Fusion, подразумевающей унифицированную архитектуру центрального и графического процессоров в одном чипе, а также будущих мобильных платформ. NVIDIA не отстаёт от соперника, выпуская широкий ассортимент видеокарт с поддержкой DisplayPort.

Из производителей мониторов, объявивших о поддержке и анонсировавших DisplayPort-продукты, первыми стали Samsung и Dell. Естественно, такую поддержку получили сначала новые мониторы с большим размером диагонали экрана и высоким разрешением. Существуют переходники DisplayPort-to-HDMI и DisplayPort-to-DVI, а также DisplayPort-to-VGA, преобразующий цифровой сигнал в аналоговый. То есть даже в случае присутствия на видеокарте исключительно разъёмов DisplayPort, их можно будет подключить к любому типу монитора.

Кроме вышеперечисленных разъёмов, на старых видеокартах также иногда встречаются композитный разъём и S-Video (S-VHS) с четырьмя или семью штырьками. Чаще всего они используются для вывода сигнала на устаревшие аналоговые телевизионные приемники, и даже на S-Video композитный сигнал зачастую получают смешиванием, что негативно влияет на качество картинки. S-Video лучше по качеству, чем композитный «тюльпан», но оба они уступают компонентному выходу YPbPr. Такой разъём есть на некоторых мониторах и телевизорах высокого разрешения, сигнал по нему передается в аналоговой форме и по качеству сравним с интерфейсом D-Sub. Впрочем, в случае современных видеокарт и мониторов обращать внимание на все аналоговые разъёмы просто не имеет никакого смысла.

Типы разъемов DVI и их технические характеристики

У многих возникает проблема правильного определения и выбора необходимого переходника для видеокарты или монитора. Для облегчения данной задачи мы представляем вашему вниманию таблицу отличий с указанием типа разъемов DVI, а также информацию об их технических характеристиках.

Виды DVI

DVI-A - только аналоговая передача.
DVI-I - аналоговая и цифровая передача.
DVI-D - только цифровая передача.

Видеокарты с DVI-A не поддерживают мониторы соответствующие стандарту DVI-D.
Видеокарту с DVI-I можно подключить к DVI-D–монитору (кабелем с двумя коннекторами DVI-D–вилка).
Переходник DVI-I на VGA существует.
Переходника DVI-D на VGA с функцией передачи видео не существует, только специальные конвертеры , которые имеют высокую стоимость (от 35 у.е.). В продаже имеются технологические переходники DVI-VGA, которые служат для других целей и не подходят для конвертации видеосигнала.

Технические характеристики

Формат данных, используемый в DVI, основан на PanelLink - формате последовательной передачи данных, разработанном фирмой Silicon Image. Использует технологию высокоскоростной передачи цифровых потоков TMDS (Transition Minimized Differential Signaling, дифференциальная передача сигналов с минимизацией перепадов уровней) - три канала, передающие потоки видео и дополнительных данных, с пропускной способностью до 3,4 Гбит/с на канал.

Максимальная длина кабеля не указана в спецификации DVI, потому что она зависит от количества передаваемой информации. Кабель длиной 10,5 метра можно использовать для передачи изображения с разрешением до 1920 x 1200 точек. По кабелю длиной 15 метров получится передать в нормальном качестве изображение с разрешением 1280 x 1024 точек. Для усиления сигнала при передаче по кабелю большой длины применяются специальные устройства. При их использовании длина кабеля может быть увеличена до 61 метра (в случае использования усилителя с собственным источником питания).
Разновидности разъёмов DVI

Single link (одинарный режим) DVI использует четыре витых пары проводов (красный, зелёный, синий, и clock), обеспечивающих возможность передавать 24 бита на пиксель. С ним может быть достигнуто максимальное возможное разрешение 1920x1200 (60 Гц) или 1920x1080 (75 Гц).

Dual link (двойной режим) DVI удваивает пропускную способность и позволяет получать разрешения экрана 2560x1600 и 2048x1536. Поэтому для самых крупных ЖК мониторов с большим разрешением, таких, как 30" модели, обязательно нужна видеокарта с двухканальным DVI-D Dual-Link выходом. Если у монитора максимальное разрешение экрана 1280x1024, то подключать его кабелем dual link не имеет смысла, т. к. данный кабель предназначен для мониторов с бо́льшим разрешением.

Источник информации -

error: